Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling.
نویسندگان
چکیده
We describe a transition from fully synchronous periodic oscillations to partially synchronous quasiperiodic dynamics in ensembles of identical oscillators with all-to-all coupling that nonlinearly depends on the generalized order parameters. We present an analytically solvable model that predicts a regime where the mean field does not entrain individual oscillators, but has a frequency incommensurate to theirs. The self-organized onset of quasiperiodicity is illustrated with Landau-Stuart oscillators and a Josephson junction array with a nonlinear coupling.
منابع مشابه
Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
We analyze a minimal model of a population of identical oscillators with a nonlinear coupling—a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamic...
متن کاملComplex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling.
We consider large populations of phase oscillators with global nonlinear coupling. For identical oscillators such populations are known to demonstrate a transition from completely synchronized state to the state of self-organized quasiperiodicity. In this state phases of all units differ, yet the population is not completely incoherent but produces a nonzero mean field; the frequency of the lat...
متن کاملExperiments on oscillator ensembles with global nonlinear coupling.
We experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the order parameter on the coupling strength is not monotonic. After destr...
متن کاملFinite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling.
We report on finite-sized-induced transitions to synchrony in a population of phase oscillators coupled via a nonlinear mean field, which microscopically is equivalent to a hypernetwork organization of interactions. Using a self-consistent approach and direct numerical simulations, we argue that a transition to synchrony occurs only for finite-size ensembles and disappears in the thermodynamic ...
متن کاملCollective phase chaos in the dynamics of interacting oscillator ensembles.
We study the chaotic behavior of order parameters in two coupled ensembles of self-sustained oscillators. Coupling within each of these ensembles is switched on and off alternately, while the mutual interaction between these two subsystems is arranged through quadratic nonlinear coupling. We show numerically that in the course of alternating Kuramoto transitions to synchrony and back to asynchr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2007